MakeItFrom.com
Menu (ESC)

S21900 Stainless Steel vs. EN AC-51300 Aluminum

S21900 stainless steel belongs to the iron alloys classification, while EN AC-51300 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S21900 stainless steel and the bottom bar is EN AC-51300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
65
Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 50
3.7
Fatigue Strength, MPa 380
78
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
25
Tensile Strength: Ultimate (UTS), MPa 710
190
Tensile Strength: Yield (Proof), MPa 390
110

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1350
600
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 14
110
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
31
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
100

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 3.0
9.1
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 160
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
6.1
Resilience: Unit (Modulus of Resilience), kJ/m3 380
87
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 26
20
Strength to Weight: Bending, points 23
28
Thermal Diffusivity, mm2/s 3.8
45
Thermal Shock Resistance, points 15
8.6

Alloy Composition

Aluminum (Al), % 0
91.4 to 95.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 19 to 21.5
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 59.4 to 67.4
0 to 0.55
Magnesium (Mg), % 0
4.5 to 6.5
Manganese (Mn), % 8.0 to 10
0 to 0.45
Nickel (Ni), % 5.5 to 7.5
0
Nitrogen (N), % 0.15 to 0.4
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.55
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15