MakeItFrom.com
Menu (ESC)

S21900 Stainless Steel vs. Grade 19 Titanium

S21900 stainless steel belongs to the iron alloys classification, while grade 19 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S21900 stainless steel and the bottom bar is grade 19 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 50
5.6 to 17
Fatigue Strength, MPa 380
550 to 620
Poisson's Ratio 0.28
0.32
Reduction in Area, % 57
22
Shear Modulus, GPa 78
47
Shear Strength, MPa 510
550 to 750
Tensile Strength: Ultimate (UTS), MPa 710
890 to 1300
Tensile Strength: Yield (Proof), MPa 390
870 to 1170

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 980
370
Melting Completion (Liquidus), °C 1400
1660
Melting Onset (Solidus), °C 1350
1600
Specific Heat Capacity, J/kg-K 480
520
Thermal Conductivity, W/m-K 14
6.2
Thermal Expansion, µm/m-K 17
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 15
45
Density, g/cm3 7.7
5.0
Embodied Carbon, kg CO2/kg material 3.0
47
Embodied Energy, MJ/kg 43
760
Embodied Water, L/kg 160
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 380
3040 to 5530
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
33
Strength to Weight: Axial, points 26
49 to 72
Strength to Weight: Bending, points 23
41 to 53
Thermal Diffusivity, mm2/s 3.8
2.4
Thermal Shock Resistance, points 15
57 to 83

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.0
Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 19 to 21.5
5.5 to 6.5
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 59.4 to 67.4
0 to 0.3
Manganese (Mn), % 8.0 to 10
0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 5.5 to 7.5
0
Nitrogen (N), % 0.15 to 0.4
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
71.1 to 77
Vanadium (V), % 0
7.5 to 8.5
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4