MakeItFrom.com
Menu (ESC)

S21900 Stainless Steel vs. Grade 24 Titanium

S21900 stainless steel belongs to the iron alloys classification, while grade 24 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S21900 stainless steel and the bottom bar is grade 24 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 50
11
Fatigue Strength, MPa 380
550
Poisson's Ratio 0.28
0.32
Reduction in Area, % 57
28
Shear Modulus, GPa 78
40
Shear Strength, MPa 510
610
Tensile Strength: Ultimate (UTS), MPa 710
1010
Tensile Strength: Yield (Proof), MPa 390
940

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 980
340
Melting Completion (Liquidus), °C 1400
1610
Melting Onset (Solidus), °C 1350
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 14
7.1
Thermal Expansion, µm/m-K 17
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
2.0

Otherwise Unclassified Properties

Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 3.0
43
Embodied Energy, MJ/kg 43
710
Embodied Water, L/kg 160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
110
Resilience: Unit (Modulus of Resilience), kJ/m3 380
4160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 26
63
Strength to Weight: Bending, points 23
50
Thermal Diffusivity, mm2/s 3.8
2.9
Thermal Shock Resistance, points 15
72

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 19 to 21.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 59.4 to 67.4
0 to 0.4
Manganese (Mn), % 8.0 to 10
0
Nickel (Ni), % 5.5 to 7.5
0
Nitrogen (N), % 0.15 to 0.4
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4