MakeItFrom.com
Menu (ESC)

S21900 Stainless Steel vs. Grade 30 Titanium

S21900 stainless steel belongs to the iron alloys classification, while grade 30 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S21900 stainless steel and the bottom bar is grade 30 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 50
23
Fatigue Strength, MPa 380
250
Poisson's Ratio 0.28
0.32
Reduction in Area, % 57
34
Shear Modulus, GPa 78
41
Shear Strength, MPa 510
240
Tensile Strength: Ultimate (UTS), MPa 710
390
Tensile Strength: Yield (Proof), MPa 390
350

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 980
320
Melting Completion (Liquidus), °C 1400
1660
Melting Onset (Solidus), °C 1350
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 14
21
Thermal Expansion, µm/m-K 17
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
6.9

Otherwise Unclassified Properties

Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 3.0
36
Embodied Energy, MJ/kg 43
600
Embodied Water, L/kg 160
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
86
Resilience: Unit (Modulus of Resilience), kJ/m3 380
590
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 26
24
Strength to Weight: Bending, points 23
26
Thermal Diffusivity, mm2/s 3.8
8.6
Thermal Shock Resistance, points 15
30

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 19 to 21.5
0
Cobalt (Co), % 0
0.2 to 0.8
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 59.4 to 67.4
0 to 0.3
Manganese (Mn), % 8.0 to 10
0
Nickel (Ni), % 5.5 to 7.5
0
Nitrogen (N), % 0.15 to 0.4
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98 to 99.76
Residuals, % 0
0 to 0.4