MakeItFrom.com
Menu (ESC)

S21900 Stainless Steel vs. C36000 Brass

S21900 stainless steel belongs to the iron alloys classification, while C36000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S21900 stainless steel and the bottom bar is C36000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 50
5.8 to 23
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
39
Shear Strength, MPa 510
210 to 310
Tensile Strength: Ultimate (UTS), MPa 710
330 to 530
Tensile Strength: Yield (Proof), MPa 390
140 to 260

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 980
120
Melting Completion (Liquidus), °C 1400
900
Melting Onset (Solidus), °C 1350
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 14
120
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
29

Otherwise Unclassified Properties

Base Metal Price, % relative 15
23
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 3.0
2.6
Embodied Energy, MJ/kg 43
45
Embodied Water, L/kg 160
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
25 to 62
Resilience: Unit (Modulus of Resilience), kJ/m3 380
89 to 340
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 26
11 to 18
Strength to Weight: Bending, points 23
13 to 18
Thermal Diffusivity, mm2/s 3.8
37
Thermal Shock Resistance, points 15
11 to 18

Alloy Composition

Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 19 to 21.5
0
Copper (Cu), % 0
60 to 63
Iron (Fe), % 59.4 to 67.4
0 to 0.35
Lead (Pb), % 0
2.5 to 3.7
Manganese (Mn), % 8.0 to 10
0
Nickel (Ni), % 5.5 to 7.5
0
Nitrogen (N), % 0.15 to 0.4
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
32.5 to 37.5
Residuals, % 0
0 to 0.5