MakeItFrom.com
Menu (ESC)

S21900 Stainless Steel vs. C68400 Brass

S21900 stainless steel belongs to the iron alloys classification, while C68400 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S21900 stainless steel and the bottom bar is C68400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
150
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 50
18
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
41
Shear Strength, MPa 510
330
Tensile Strength: Ultimate (UTS), MPa 710
540
Tensile Strength: Yield (Proof), MPa 390
310

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 980
130
Melting Completion (Liquidus), °C 1400
840
Melting Onset (Solidus), °C 1350
820
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 14
66
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
87
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
99

Otherwise Unclassified Properties

Base Metal Price, % relative 15
23
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 43
47
Embodied Water, L/kg 160
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
81
Resilience: Unit (Modulus of Resilience), kJ/m3 380
460
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 26
19
Strength to Weight: Bending, points 23
19
Thermal Diffusivity, mm2/s 3.8
21
Thermal Shock Resistance, points 15
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0
0.0010 to 0.030
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 19 to 21.5
0
Copper (Cu), % 0
59 to 64
Iron (Fe), % 59.4 to 67.4
0 to 1.0
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 8.0 to 10
0.2 to 1.5
Nickel (Ni), % 5.5 to 7.5
0 to 0.5
Nitrogen (N), % 0.15 to 0.4
0
Phosphorus (P), % 0 to 0.045
0.030 to 0.3
Silicon (Si), % 0 to 1.0
1.5 to 2.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
28.6 to 39.3
Residuals, % 0
0 to 0.5