MakeItFrom.com
Menu (ESC)

S21904 Stainless Steel vs. 2117 Aluminum

S21904 stainless steel belongs to the iron alloys classification, while 2117 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S21904 stainless steel and the bottom bar is 2117 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 300
70
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 17 to 51
26
Fatigue Strength, MPa 380 to 550
95
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
27
Shear Strength, MPa 510 to 620
200
Tensile Strength: Ultimate (UTS), MPa 700 to 1000
300
Tensile Strength: Yield (Proof), MPa 390 to 910
170

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 980
220
Melting Completion (Liquidus), °C 1400
650
Melting Onset (Solidus), °C 1350
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 14
150
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
120

Otherwise Unclassified Properties

Base Metal Price, % relative 15
10
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 3.0
8.2
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 160
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160 to 310
64
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 2070
190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 25 to 36
28
Strength to Weight: Bending, points 23 to 29
33
Thermal Diffusivity, mm2/s 3.8
59
Thermal Shock Resistance, points 15 to 21
12

Alloy Composition

Aluminum (Al), % 0
91 to 97.6
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 19 to 21.5
0 to 0.1
Copper (Cu), % 0
2.2 to 4.5
Iron (Fe), % 59.5 to 67.4
0 to 0.7
Magnesium (Mg), % 0
0.2 to 1.0
Manganese (Mn), % 8.0 to 10
0.4 to 1.0
Nickel (Ni), % 5.5 to 7.5
0
Nitrogen (N), % 0.15 to 0.4
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0.2 to 0.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15