MakeItFrom.com
Menu (ESC)

S21904 Stainless Steel vs. 364.0 Aluminum

S21904 stainless steel belongs to the iron alloys classification, while 364.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S21904 stainless steel and the bottom bar is 364.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 17 to 51
7.5
Fatigue Strength, MPa 380 to 550
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
27
Shear Strength, MPa 510 to 620
200
Tensile Strength: Ultimate (UTS), MPa 700 to 1000
300
Tensile Strength: Yield (Proof), MPa 390 to 910
160

Thermal Properties

Latent Heat of Fusion, J/g 290
520
Maximum Temperature: Mechanical, °C 980
190
Melting Completion (Liquidus), °C 1400
600
Melting Onset (Solidus), °C 1350
560
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 14
120
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
100

Otherwise Unclassified Properties

Base Metal Price, % relative 15
11
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 3.0
8.0
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 160
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160 to 310
19
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 2070
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 25 to 36
31
Strength to Weight: Bending, points 23 to 29
38
Thermal Diffusivity, mm2/s 3.8
51
Thermal Shock Resistance, points 15 to 21
14

Alloy Composition

Aluminum (Al), % 0
87.2 to 92
Beryllium (Be), % 0
0.020 to 0.040
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 19 to 21.5
0.25 to 0.5
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 59.5 to 67.4
0 to 1.5
Magnesium (Mg), % 0
0.2 to 0.4
Manganese (Mn), % 8.0 to 10
0 to 0.1
Nickel (Ni), % 5.5 to 7.5
0 to 0.15
Nitrogen (N), % 0.15 to 0.4
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
7.5 to 9.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15