MakeItFrom.com
Menu (ESC)

S21904 Stainless Steel vs. 6065 Aluminum

S21904 stainless steel belongs to the iron alloys classification, while 6065 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S21904 stainless steel and the bottom bar is 6065 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 17 to 51
4.5 to 11
Fatigue Strength, MPa 380 to 550
96 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 510 to 620
190 to 230
Tensile Strength: Ultimate (UTS), MPa 700 to 1000
310 to 400
Tensile Strength: Yield (Proof), MPa 390 to 910
270 to 380

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 980
180
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1350
590
Specific Heat Capacity, J/kg-K 480
890
Thermal Conductivity, W/m-K 14
170
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
43
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
140

Otherwise Unclassified Properties

Base Metal Price, % relative 15
11
Density, g/cm3 7.7
2.8
Embodied Carbon, kg CO2/kg material 3.0
8.4
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 160
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160 to 310
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 2070
540 to 1040
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 25 to 36
31 to 40
Strength to Weight: Bending, points 23 to 29
36 to 43
Thermal Diffusivity, mm2/s 3.8
67
Thermal Shock Resistance, points 15 to 21
14 to 18

Alloy Composition

Aluminum (Al), % 0
94.4 to 98.2
Bismuth (Bi), % 0
0.5 to 1.5
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 19 to 21.5
0 to 0.15
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 59.5 to 67.4
0 to 0.7
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 8.0 to 10
0 to 0.15
Nickel (Ni), % 5.5 to 7.5
0
Nitrogen (N), % 0.15 to 0.4
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0.4 to 0.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15