MakeItFrom.com
Menu (ESC)

S21904 Stainless Steel vs. 705.0 Aluminum

S21904 stainless steel belongs to the iron alloys classification, while 705.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S21904 stainless steel and the bottom bar is 705.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 300
62 to 65
Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 17 to 51
8.4 to 10
Fatigue Strength, MPa 380 to 550
63 to 98
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Tensile Strength: Ultimate (UTS), MPa 700 to 1000
240 to 260
Tensile Strength: Yield (Proof), MPa 390 to 910
130

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 980
180
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1350
610
Specific Heat Capacity, J/kg-K 480
890
Thermal Conductivity, W/m-K 14
140
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
110

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 7.7
2.8
Embodied Carbon, kg CO2/kg material 3.0
8.4
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 160
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160 to 310
18 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 2070
120 to 130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 25 to 36
24 to 26
Strength to Weight: Bending, points 23 to 29
31 to 32
Thermal Diffusivity, mm2/s 3.8
55
Thermal Shock Resistance, points 15 to 21
11

Alloy Composition

Aluminum (Al), % 0
92.3 to 98.6
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 19 to 21.5
0 to 0.4
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 59.5 to 67.4
0 to 0.8
Magnesium (Mg), % 0
1.4 to 1.8
Manganese (Mn), % 8.0 to 10
0 to 0.6
Nickel (Ni), % 5.5 to 7.5
0
Nitrogen (N), % 0.15 to 0.4
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 3.3
Residuals, % 0
0 to 0.15