MakeItFrom.com
Menu (ESC)

S21904 Stainless Steel vs. 7108A Aluminum

S21904 stainless steel belongs to the iron alloys classification, while 7108A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S21904 stainless steel and the bottom bar is 7108A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 17 to 51
11 to 13
Fatigue Strength, MPa 380 to 550
120 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 510 to 620
210
Tensile Strength: Ultimate (UTS), MPa 700 to 1000
350
Tensile Strength: Yield (Proof), MPa 390 to 910
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 290
380
Maximum Temperature: Mechanical, °C 980
210
Melting Completion (Liquidus), °C 1400
630
Melting Onset (Solidus), °C 1350
520
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 14
150
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
36
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
110

Otherwise Unclassified Properties

Base Metal Price, % relative 15
10
Density, g/cm3 7.7
2.9
Embodied Carbon, kg CO2/kg material 3.0
8.3
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 160
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160 to 310
38 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 2070
610 to 640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 25 to 36
33 to 34
Strength to Weight: Bending, points 23 to 29
38
Thermal Diffusivity, mm2/s 3.8
59
Thermal Shock Resistance, points 15 to 21
15 to 16

Alloy Composition

Aluminum (Al), % 0
91.6 to 94.4
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 19 to 21.5
0 to 0.040
Copper (Cu), % 0
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 59.5 to 67.4
0 to 0.3
Magnesium (Mg), % 0
0.7 to 1.5
Manganese (Mn), % 8.0 to 10
0 to 0.050
Nickel (Ni), % 5.5 to 7.5
0
Nitrogen (N), % 0.15 to 0.4
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.030
Zinc (Zn), % 0
4.8 to 5.8
Zirconium (Zr), % 0
0.15 to 0.25
Residuals, % 0
0 to 0.15