MakeItFrom.com
Menu (ESC)

S21904 Stainless Steel vs. A384.0 Aluminum

S21904 stainless steel belongs to the iron alloys classification, while A384.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S21904 stainless steel and the bottom bar is A384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
74
Elongation at Break, % 17 to 51
2.5
Fatigue Strength, MPa 380 to 550
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
28
Shear Strength, MPa 510 to 620
200
Tensile Strength: Ultimate (UTS), MPa 700 to 1000
330
Tensile Strength: Yield (Proof), MPa 390 to 910
170

Thermal Properties

Latent Heat of Fusion, J/g 290
550
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1400
610
Melting Onset (Solidus), °C 1350
510
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 14
96
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
23
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
73

Otherwise Unclassified Properties

Base Metal Price, % relative 15
11
Density, g/cm3 7.7
2.8
Embodied Carbon, kg CO2/kg material 3.0
7.5
Embodied Energy, MJ/kg 43
140
Embodied Water, L/kg 160
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160 to 310
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 2070
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 25 to 36
32
Strength to Weight: Bending, points 23 to 29
38
Thermal Diffusivity, mm2/s 3.8
39
Thermal Shock Resistance, points 15 to 21
15

Alloy Composition

Aluminum (Al), % 0
79.3 to 86.5
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 19 to 21.5
0
Copper (Cu), % 0
3.0 to 4.5
Iron (Fe), % 59.5 to 67.4
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 8.0 to 10
0 to 0.5
Nickel (Ni), % 5.5 to 7.5
0 to 0.5
Nitrogen (N), % 0.15 to 0.4
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
10.5 to 12
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.35
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5