MakeItFrom.com
Menu (ESC)

S21904 Stainless Steel vs. ASTM A387 Grade 91 Class 2

Both S21904 stainless steel and ASTM A387 grade 91 class 2 are iron alloys. They have 73% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S21904 stainless steel and the bottom bar is ASTM A387 grade 91 class 2.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 300
200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 17 to 51
20
Fatigue Strength, MPa 380 to 550
330
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
75
Shear Strength, MPa 510 to 620
420
Tensile Strength: Ultimate (UTS), MPa 700 to 1000
670
Tensile Strength: Yield (Proof), MPa 390 to 910
470

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Mechanical, °C 980
600
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1350
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 14
26
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
10

Otherwise Unclassified Properties

Base Metal Price, % relative 15
7.0
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.6
Embodied Energy, MJ/kg 43
37
Embodied Water, L/kg 160
88

Common Calculations

PREN (Pitting Resistance) 25
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160 to 310
120
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 2070
580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25 to 36
24
Strength to Weight: Bending, points 23 to 29
22
Thermal Diffusivity, mm2/s 3.8
6.9
Thermal Shock Resistance, points 15 to 21
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Carbon (C), % 0 to 0.040
0.080 to 0.12
Chromium (Cr), % 19 to 21.5
8.0 to 9.5
Iron (Fe), % 59.5 to 67.4
87.3 to 90.3
Manganese (Mn), % 8.0 to 10
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 5.5 to 7.5
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0.15 to 0.4
0.030 to 0.070
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 1.0
0.2 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010