MakeItFrom.com
Menu (ESC)

S21904 Stainless Steel vs. C81500 Copper

S21904 stainless steel belongs to the iron alloys classification, while C81500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S21904 stainless steel and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 300
110
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 17 to 51
17
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
44
Tensile Strength: Ultimate (UTS), MPa 700 to 1000
350
Tensile Strength: Yield (Proof), MPa 390 to 910
280

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1400
1090
Melting Onset (Solidus), °C 1350
1080
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 14
320
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
82
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
83

Otherwise Unclassified Properties

Base Metal Price, % relative 15
31
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 3.0
2.6
Embodied Energy, MJ/kg 43
41
Embodied Water, L/kg 160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160 to 310
56
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 2070
330
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25 to 36
11
Strength to Weight: Bending, points 23 to 29
12
Thermal Diffusivity, mm2/s 3.8
91
Thermal Shock Resistance, points 15 to 21
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 19 to 21.5
0.4 to 1.5
Copper (Cu), % 0
97.4 to 99.6
Iron (Fe), % 59.5 to 67.4
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 8.0 to 10
0
Nickel (Ni), % 5.5 to 7.5
0
Nitrogen (N), % 0.15 to 0.4
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5