MakeItFrom.com
Menu (ESC)

S21904 Stainless Steel vs. R30556 Alloy

Both S21904 stainless steel and R30556 alloy are iron alloys. They have 58% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S21904 stainless steel and the bottom bar is R30556 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 17 to 51
45
Fatigue Strength, MPa 380 to 550
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
81
Shear Strength, MPa 510 to 620
550
Tensile Strength: Ultimate (UTS), MPa 700 to 1000
780
Tensile Strength: Yield (Proof), MPa 390 to 910
350

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 430
450
Maximum Temperature: Mechanical, °C 980
1100
Melting Completion (Liquidus), °C 1400
1420
Melting Onset (Solidus), °C 1350
1330
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 14
11
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 15
70
Density, g/cm3 7.7
8.4
Embodied Carbon, kg CO2/kg material 3.0
8.7
Embodied Energy, MJ/kg 43
130
Embodied Water, L/kg 160
300

Common Calculations

PREN (Pitting Resistance) 25
40
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160 to 310
290
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 2070
290
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 25 to 36
26
Strength to Weight: Bending, points 23 to 29
22
Thermal Diffusivity, mm2/s 3.8
2.9
Thermal Shock Resistance, points 15 to 21
18

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.5
Boron (B), % 0
0 to 0.020
Carbon (C), % 0 to 0.040
0.050 to 0.15
Chromium (Cr), % 19 to 21.5
21 to 23
Cobalt (Co), % 0
16 to 21
Iron (Fe), % 59.5 to 67.4
20.4 to 38.2
Lanthanum (La), % 0
0.0050 to 0.1
Manganese (Mn), % 8.0 to 10
0.5 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 5.5 to 7.5
19 to 22.5
Niobium (Nb), % 0
0 to 0.3
Nitrogen (N), % 0.15 to 0.4
0.1 to 0.3
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0.2 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.015
Tantalum (Ta), % 0
0.3 to 1.3
Tungsten (W), % 0
2.0 to 3.5
Zinc (Zn), % 0
0.0010 to 0.1