MakeItFrom.com
Menu (ESC)

S24000 Stainless Steel vs. EN AC-51300 Aluminum

S24000 stainless steel belongs to the iron alloys classification, while EN AC-51300 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S24000 stainless steel and the bottom bar is EN AC-51300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
65
Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 39
3.7
Fatigue Strength, MPa 370
78
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
25
Tensile Strength: Ultimate (UTS), MPa 770
190
Tensile Strength: Yield (Proof), MPa 430
110

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1390
640
Melting Onset (Solidus), °C 1350
600
Specific Heat Capacity, J/kg-K 480
910
Thermal Expansion, µm/m-K 17
24

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 2.7
9.1
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
6.1
Resilience: Unit (Modulus of Resilience), kJ/m3 470
87
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 28
20
Strength to Weight: Bending, points 24
28
Thermal Shock Resistance, points 16
8.6

Alloy Composition

Aluminum (Al), % 0
91.4 to 95.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 61.5 to 69
0 to 0.55
Magnesium (Mg), % 0
4.5 to 6.5
Manganese (Mn), % 11.5 to 14.5
0 to 0.45
Nickel (Ni), % 2.3 to 3.7
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 0.75
0 to 0.55
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15