MakeItFrom.com
Menu (ESC)

S24000 Stainless Steel vs. EN AC-71100 Aluminum

S24000 stainless steel belongs to the iron alloys classification, while EN AC-71100 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S24000 stainless steel and the bottom bar is EN AC-71100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
110
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 39
1.1
Fatigue Strength, MPa 370
150
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 770
260
Tensile Strength: Yield (Proof), MPa 430
230

Thermal Properties

Latent Heat of Fusion, J/g 280
490
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1390
580
Melting Onset (Solidus), °C 1350
520
Specific Heat Capacity, J/kg-K 480
860
Thermal Expansion, µm/m-K 17
22

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 7.6
2.9
Embodied Carbon, kg CO2/kg material 2.7
7.4
Embodied Energy, MJ/kg 39
140
Embodied Water, L/kg 150
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
2.8
Resilience: Unit (Modulus of Resilience), kJ/m3 470
360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 28
25
Strength to Weight: Bending, points 24
31
Thermal Shock Resistance, points 16
12

Alloy Composition

Aluminum (Al), % 0
78.7 to 83.3
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 61.5 to 69
0 to 0.3
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 11.5 to 14.5
0 to 0.15
Nickel (Ni), % 2.3 to 3.7
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 0.75
7.5 to 9.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
9.0 to 10.5
Residuals, % 0
0 to 0.15