MakeItFrom.com
Menu (ESC)

S28200 Stainless Steel vs. 364.0 Aluminum

S28200 stainless steel belongs to the iron alloys classification, while 364.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S28200 stainless steel and the bottom bar is 364.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 45
7.5
Fatigue Strength, MPa 430
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 610
200
Tensile Strength: Ultimate (UTS), MPa 870
300
Tensile Strength: Yield (Proof), MPa 460
160

Thermal Properties

Latent Heat of Fusion, J/g 290
520
Maximum Temperature: Mechanical, °C 900
190
Melting Completion (Liquidus), °C 1380
600
Melting Onset (Solidus), °C 1330
560
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 18
21

Otherwise Unclassified Properties

Base Metal Price, % relative 12
11
Density, g/cm3 7.6
2.6
Embodied Carbon, kg CO2/kg material 2.8
8.0
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 160
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
19
Resilience: Unit (Modulus of Resilience), kJ/m3 540
180
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 26
53
Strength to Weight: Axial, points 32
31
Strength to Weight: Bending, points 27
38
Thermal Shock Resistance, points 17
14

Alloy Composition

Aluminum (Al), % 0
87.2 to 92
Beryllium (Be), % 0
0.020 to 0.040
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 17 to 19
0.25 to 0.5
Copper (Cu), % 0.75 to 1.3
0 to 0.2
Iron (Fe), % 57.7 to 64.1
0 to 1.5
Magnesium (Mg), % 0
0.2 to 0.4
Manganese (Mn), % 17 to 19
0 to 0.1
Molybdenum (Mo), % 0.75 to 1.3
0
Nickel (Ni), % 0
0 to 0.15
Nitrogen (N), % 0.4 to 0.6
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
7.5 to 9.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15