MakeItFrom.com
Menu (ESC)

S28200 Stainless Steel vs. 520.0 Aluminum

S28200 stainless steel belongs to the iron alloys classification, while 520.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S28200 stainless steel and the bottom bar is 520.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
75
Elastic (Young's, Tensile) Modulus, GPa 200
66
Elongation at Break, % 45
14
Fatigue Strength, MPa 430
55
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
25
Shear Strength, MPa 610
230
Tensile Strength: Ultimate (UTS), MPa 870
330
Tensile Strength: Yield (Proof), MPa 460
170

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 900
170
Melting Completion (Liquidus), °C 1380
600
Melting Onset (Solidus), °C 1330
480
Specific Heat Capacity, J/kg-K 480
910
Thermal Expansion, µm/m-K 18
25

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 7.6
2.6
Embodied Carbon, kg CO2/kg material 2.8
9.8
Embodied Energy, MJ/kg 41
160
Embodied Water, L/kg 160
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
39
Resilience: Unit (Modulus of Resilience), kJ/m3 540
230
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
52
Strength to Weight: Axial, points 32
35
Strength to Weight: Bending, points 27
41
Thermal Shock Resistance, points 17
14

Alloy Composition

Aluminum (Al), % 0
87.9 to 90.5
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0.75 to 1.3
0 to 0.25
Iron (Fe), % 57.7 to 64.1
0 to 0.3
Magnesium (Mg), % 0
9.5 to 10.6
Manganese (Mn), % 17 to 19
0 to 0.15
Molybdenum (Mo), % 0.75 to 1.3
0
Nitrogen (N), % 0.4 to 0.6
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15