MakeItFrom.com
Menu (ESC)

S28200 Stainless Steel vs. A360.0 Aluminum

S28200 stainless steel belongs to the iron alloys classification, while A360.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S28200 stainless steel and the bottom bar is A360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
75
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 45
1.6 to 5.0
Fatigue Strength, MPa 430
82 to 150
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 610
180
Tensile Strength: Ultimate (UTS), MPa 870
180 to 320
Tensile Strength: Yield (Proof), MPa 460
170 to 260

Thermal Properties

Latent Heat of Fusion, J/g 290
530
Maximum Temperature: Mechanical, °C 900
170
Melting Completion (Liquidus), °C 1380
680
Melting Onset (Solidus), °C 1330
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 18
21

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 7.6
2.6
Embodied Carbon, kg CO2/kg material 2.8
7.8
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 160
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
4.6 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 540
190 to 470
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 26
53
Strength to Weight: Axial, points 32
19 to 34
Strength to Weight: Bending, points 27
27 to 39
Thermal Shock Resistance, points 17
8.5 to 15

Alloy Composition

Aluminum (Al), % 0
85.8 to 90.6
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0.75 to 1.3
0 to 0.6
Iron (Fe), % 57.7 to 64.1
0 to 1.3
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 17 to 19
0 to 0.35
Molybdenum (Mo), % 0.75 to 1.3
0
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0.4 to 0.6
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
9.0 to 10
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25