MakeItFrom.com
Menu (ESC)

S28200 Stainless Steel vs. EN AC-45100 Aluminum

S28200 stainless steel belongs to the iron alloys classification, while EN AC-45100 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S28200 stainless steel and the bottom bar is EN AC-45100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
97 to 130
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 45
1.0 to 2.8
Fatigue Strength, MPa 430
82 to 99
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 870
300 to 360
Tensile Strength: Yield (Proof), MPa 460
210 to 320

Thermal Properties

Latent Heat of Fusion, J/g 290
470
Maximum Temperature: Mechanical, °C 900
170
Melting Completion (Liquidus), °C 1380
630
Melting Onset (Solidus), °C 1330
550
Specific Heat Capacity, J/kg-K 480
890
Thermal Expansion, µm/m-K 18
22

Otherwise Unclassified Properties

Base Metal Price, % relative 12
10
Density, g/cm3 7.6
2.8
Embodied Carbon, kg CO2/kg material 2.8
7.9
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 160
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
3.5 to 7.6
Resilience: Unit (Modulus of Resilience), kJ/m3 540
290 to 710
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
49
Strength to Weight: Axial, points 32
30 to 35
Strength to Weight: Bending, points 27
35 to 39
Thermal Shock Resistance, points 17
14 to 16

Alloy Composition

Aluminum (Al), % 0
88 to 92.8
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0.75 to 1.3
2.6 to 3.6
Iron (Fe), % 57.7 to 64.1
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.15 to 0.45
Manganese (Mn), % 17 to 19
0 to 0.55
Molybdenum (Mo), % 0.75 to 1.3
0
Nickel (Ni), % 0
0 to 0.1
Nitrogen (N), % 0.4 to 0.6
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
4.5 to 6.0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15