MakeItFrom.com
Menu (ESC)

S30415 Stainless Steel vs. 2618A Aluminum

S30415 stainless steel belongs to the iron alloys classification, while 2618A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S30415 stainless steel and the bottom bar is 2618A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 45
4.5
Fatigue Strength, MPa 300
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 470
260
Tensile Strength: Ultimate (UTS), MPa 670
440
Tensile Strength: Yield (Proof), MPa 330
410

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 940
230
Melting Completion (Liquidus), °C 1410
670
Melting Onset (Solidus), °C 1370
560
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 21
150
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
110

Otherwise Unclassified Properties

Base Metal Price, % relative 15
11
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 3.1
8.4
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 140
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
19
Resilience: Unit (Modulus of Resilience), kJ/m3 280
1180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 24
41
Strength to Weight: Bending, points 22
44
Thermal Diffusivity, mm2/s 5.6
59
Thermal Shock Resistance, points 15
19

Alloy Composition

Aluminum (Al), % 0
91.5 to 95.2
Carbon (C), % 0.040 to 0.060
0
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 18 to 19
0
Copper (Cu), % 0
1.8 to 2.7
Iron (Fe), % 67.8 to 71.8
0.9 to 1.4
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 0.8
0 to 0.25
Nickel (Ni), % 9.0 to 10
0.8 to 1.4
Nitrogen (N), % 0.12 to 0.18
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 1.0 to 2.0
0.15 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.15
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15