MakeItFrom.com
Menu (ESC)

S30415 Stainless Steel vs. EN 1.1133 Steel

Both S30415 stainless steel and EN 1.1133 steel are iron alloys. They have 71% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S30415 stainless steel and the bottom bar is EN 1.1133 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
170 to 180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 45
19 to 24
Fatigue Strength, MPa 300
230 to 310
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 470
370 to 380
Tensile Strength: Ultimate (UTS), MPa 670
580 to 620
Tensile Strength: Yield (Proof), MPa 330
320 to 460

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 940
400
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 21
49
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 15
2.1
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.1
1.5
Embodied Energy, MJ/kg 43
19
Embodied Water, L/kg 140
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 280
270 to 550
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
21 to 22
Strength to Weight: Bending, points 22
20 to 21
Thermal Diffusivity, mm2/s 5.6
13
Thermal Shock Resistance, points 15
18 to 19

Alloy Composition

Carbon (C), % 0.040 to 0.060
0.17 to 0.23
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 18 to 19
0 to 0.4
Iron (Fe), % 67.8 to 71.8
96.9 to 98.8
Manganese (Mn), % 0 to 0.8
1.0 to 1.5
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 9.0 to 10
0 to 0.4
Nitrogen (N), % 0.12 to 0.18
0
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 1.0 to 2.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.035