MakeItFrom.com
Menu (ESC)

S30415 Stainless Steel vs. EN 1.4371 Stainless Steel

Both S30415 stainless steel and EN 1.4371 stainless steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S30415 stainless steel and the bottom bar is EN 1.4371 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
220 to 230
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 45
45 to 51
Fatigue Strength, MPa 300
290 to 340
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 470
520 to 540
Tensile Strength: Ultimate (UTS), MPa 670
740 to 750
Tensile Strength: Yield (Proof), MPa 330
320 to 340

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 420
410
Maximum Temperature: Mechanical, °C 940
880
Melting Completion (Liquidus), °C 1410
1410
Melting Onset (Solidus), °C 1370
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 15
12
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 3.1
2.6
Embodied Energy, MJ/kg 43
38
Embodied Water, L/kg 140
140

Common Calculations

PREN (Pitting Resistance) 21
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
270 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 280
250 to 300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
27
Strength to Weight: Bending, points 22
24
Thermal Diffusivity, mm2/s 5.6
4.0
Thermal Shock Resistance, points 15
16

Alloy Composition

Carbon (C), % 0.040 to 0.060
0 to 0.030
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 18 to 19
16 to 17.5
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 67.8 to 71.8
66.7 to 74.4
Manganese (Mn), % 0 to 0.8
6.0 to 8.0
Nickel (Ni), % 9.0 to 10
3.5 to 5.5
Nitrogen (N), % 0.12 to 0.18
0.15 to 0.25
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 1.0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015