MakeItFrom.com
Menu (ESC)

S30415 Stainless Steel vs. Grade 36 Titanium

S30415 stainless steel belongs to the iron alloys classification, while grade 36 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S30415 stainless steel and the bottom bar is grade 36 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 45
11
Fatigue Strength, MPa 300
300
Poisson's Ratio 0.28
0.36
Shear Modulus, GPa 77
39
Shear Strength, MPa 470
320
Tensile Strength: Ultimate (UTS), MPa 670
530
Tensile Strength: Yield (Proof), MPa 330
520

Thermal Properties

Latent Heat of Fusion, J/g 300
370
Maximum Temperature: Mechanical, °C 940
320
Melting Completion (Liquidus), °C 1410
2020
Melting Onset (Solidus), °C 1370
1950
Specific Heat Capacity, J/kg-K 480
420
Thermal Expansion, µm/m-K 17
8.1

Otherwise Unclassified Properties

Density, g/cm3 7.7
6.3
Embodied Carbon, kg CO2/kg material 3.1
58
Embodied Energy, MJ/kg 43
920
Embodied Water, L/kg 140
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
59
Resilience: Unit (Modulus of Resilience), kJ/m3 280
1260
Stiffness to Weight: Axial, points 14
9.3
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
23
Strength to Weight: Bending, points 22
23
Thermal Shock Resistance, points 15
45

Alloy Composition

Carbon (C), % 0.040 to 0.060
0 to 0.030
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 18 to 19
0
Hydrogen (H), % 0
0 to 0.0035
Iron (Fe), % 67.8 to 71.8
0 to 0.030
Manganese (Mn), % 0 to 0.8
0
Nickel (Ni), % 9.0 to 10
0
Niobium (Nb), % 0
42 to 47
Nitrogen (N), % 0.12 to 0.18
0 to 0.030
Oxygen (O), % 0
0 to 0.16
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 1.0 to 2.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
52.3 to 58
Residuals, % 0
0 to 0.4