MakeItFrom.com
Menu (ESC)

S30415 Stainless Steel vs. S40930 Stainless Steel

Both S30415 stainless steel and S40930 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 82% of their average alloy composition in common.

For each property being compared, the top bar is S30415 stainless steel and the bottom bar is S40930 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 45
23
Fatigue Strength, MPa 300
130
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 84
76
Shear Modulus, GPa 77
75
Shear Strength, MPa 470
270
Tensile Strength: Ultimate (UTS), MPa 670
430
Tensile Strength: Yield (Proof), MPa 330
190

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Corrosion, °C 420
460
Maximum Temperature: Mechanical, °C 940
710
Melting Completion (Liquidus), °C 1410
1450
Melting Onset (Solidus), °C 1370
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 21
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 15
8.5
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.1
2.3
Embodied Energy, MJ/kg 43
32
Embodied Water, L/kg 140
94

Common Calculations

PREN (Pitting Resistance) 21
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
80
Resilience: Unit (Modulus of Resilience), kJ/m3 280
94
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
16
Strength to Weight: Bending, points 22
16
Thermal Diffusivity, mm2/s 5.6
6.7
Thermal Shock Resistance, points 15
16

Alloy Composition

Carbon (C), % 0.040 to 0.060
0 to 0.030
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 18 to 19
10.5 to 11.7
Iron (Fe), % 67.8 to 71.8
84.7 to 89.4
Manganese (Mn), % 0 to 0.8
0 to 1.0
Nickel (Ni), % 9.0 to 10
0 to 0.5
Niobium (Nb), % 0
0.080 to 0.75
Nitrogen (N), % 0.12 to 0.18
0 to 0.030
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 1.0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0
0.050 to 0.2