MakeItFrom.com
Menu (ESC)

S30435 Stainless Steel vs. EN AC-51100 Aluminum

S30435 stainless steel belongs to the iron alloys classification, while EN AC-51100 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S30435 stainless steel and the bottom bar is EN AC-51100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
57
Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 51
4.5
Fatigue Strength, MPa 170
58
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 510
160
Tensile Strength: Yield (Proof), MPa 170
80

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 900
170
Melting Completion (Liquidus), °C 1420
640
Melting Onset (Solidus), °C 1380
620
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
110

Otherwise Unclassified Properties

Base Metal Price, % relative 14
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.9
8.7
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 140
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
6.0
Resilience: Unit (Modulus of Resilience), kJ/m3 77
47
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 18
25
Thermal Diffusivity, mm2/s 4.2
53
Thermal Shock Resistance, points 12
7.3

Alloy Composition

Aluminum (Al), % 0
94.5 to 97.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 1.5 to 3.0
0 to 0.050
Iron (Fe), % 66.9 to 75.5
0 to 0.55
Magnesium (Mg), % 0
2.5 to 3.5
Manganese (Mn), % 0 to 2.0
0 to 0.45
Nickel (Ni), % 7.0 to 9.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.55
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15