MakeItFrom.com
Menu (ESC)

S30435 Stainless Steel vs. C17500 Copper

S30435 stainless steel belongs to the iron alloys classification, while C17500 copper belongs to the copper alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S30435 stainless steel and the bottom bar is C17500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 51
6.0 to 30
Fatigue Strength, MPa 170
170 to 310
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 77
38 to 99
Shear Modulus, GPa 76
45
Shear Strength, MPa 370
200 to 520
Tensile Strength: Ultimate (UTS), MPa 510
310 to 860
Tensile Strength: Yield (Proof), MPa 170
170 to 760

Thermal Properties

Latent Heat of Fusion, J/g 280
220
Maximum Temperature: Mechanical, °C 900
220
Melting Completion (Liquidus), °C 1420
1060
Melting Onset (Solidus), °C 1380
1020
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
200
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
24 to 53
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
24 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 14
60
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.9
4.7
Embodied Energy, MJ/kg 40
73
Embodied Water, L/kg 140
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 77
120 to 2390
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18
9.7 to 27
Strength to Weight: Bending, points 18
11 to 23
Thermal Diffusivity, mm2/s 4.2
59
Thermal Shock Resistance, points 12
11 to 29

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 18
0
Cobalt (Co), % 0
2.4 to 2.7
Copper (Cu), % 1.5 to 3.0
95.6 to 97.2
Iron (Fe), % 66.9 to 75.5
0 to 0.1
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 7.0 to 9.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.5