MakeItFrom.com
Menu (ESC)

S30435 Stainless Steel vs. C36500 Muntz Metal

S30435 stainless steel belongs to the iron alloys classification, while C36500 Muntz Metal belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S30435 stainless steel and the bottom bar is C36500 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 51
40
Poisson's Ratio 0.28
0.3
Rockwell B Hardness 77
45
Shear Modulus, GPa 76
39
Shear Strength, MPa 370
270
Tensile Strength: Ultimate (UTS), MPa 510
400
Tensile Strength: Yield (Proof), MPa 170
160

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 900
120
Melting Completion (Liquidus), °C 1420
900
Melting Onset (Solidus), °C 1380
890
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
120
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
32

Otherwise Unclassified Properties

Base Metal Price, % relative 14
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 40
46
Embodied Water, L/kg 140
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
130
Resilience: Unit (Modulus of Resilience), kJ/m3 77
120
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 18
14
Strength to Weight: Bending, points 18
15
Thermal Diffusivity, mm2/s 4.2
40
Thermal Shock Resistance, points 12
13

Alloy Composition

Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 1.5 to 3.0
58 to 61
Iron (Fe), % 66.9 to 75.5
0 to 0.15
Lead (Pb), % 0
0.25 to 0.7
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 7.0 to 9.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
37.5 to 41.8
Residuals, % 0
0 to 0.4