MakeItFrom.com
Menu (ESC)

S30441 Stainless Steel vs. EN 1.0488 Steel

Both S30441 stainless steel and EN 1.0488 steel are iron alloys. They have 69% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S30441 stainless steel and the bottom bar is EN 1.0488 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
130
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 45
27
Fatigue Strength, MPa 210
210
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 400
280
Tensile Strength: Ultimate (UTS), MPa 580
440
Tensile Strength: Yield (Proof), MPa 230
280

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 940
400
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
49
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 18
2.3
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.4
1.5
Embodied Energy, MJ/kg 50
20
Embodied Water, L/kg 150
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
100
Resilience: Unit (Modulus of Resilience), kJ/m3 140
200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
15
Strength to Weight: Bending, points 20
16
Thermal Diffusivity, mm2/s 4.0
13
Thermal Shock Resistance, points 13
14

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0 to 0.080
0 to 0.16
Chromium (Cr), % 17.5 to 19.5
0 to 0.3
Copper (Cu), % 1.5 to 2.5
0 to 0.3
Iron (Fe), % 62 to 71.7
96.6 to 99.38
Manganese (Mn), % 0 to 2.0
0.6 to 1.5
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 8.0 to 10.5
0 to 0.5
Niobium (Nb), % 0.1 to 0.5
0 to 0.050
Nitrogen (N), % 0 to 0.1
0 to 0.012
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 1.0 to 2.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.0080
Titanium (Ti), % 0
0 to 0.030
Tungsten (W), % 0.2 to 0.8
0
Vanadium (V), % 0
0 to 0.050