MakeItFrom.com
Menu (ESC)

S30441 Stainless Steel vs. EN 1.4818 Stainless Steel

Both S30441 stainless steel and EN 1.4818 stainless steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S30441 stainless steel and the bottom bar is EN 1.4818 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 45
40
Fatigue Strength, MPa 210
280
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 400
480
Tensile Strength: Ultimate (UTS), MPa 580
700
Tensile Strength: Yield (Proof), MPa 230
330

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 460
420
Maximum Temperature: Mechanical, °C 940
1050
Melting Completion (Liquidus), °C 1420
1410
Melting Onset (Solidus), °C 1370
1370
Specific Heat Capacity, J/kg-K 480
490
Thermal Conductivity, W/m-K 15
17
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 18
16
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.4
3.1
Embodied Energy, MJ/kg 50
44
Embodied Water, L/kg 150
150

Common Calculations

PREN (Pitting Resistance) 20
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
230
Resilience: Unit (Modulus of Resilience), kJ/m3 140
270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
25
Strength to Weight: Bending, points 20
23
Thermal Diffusivity, mm2/s 4.0
4.5
Thermal Shock Resistance, points 13
15

Alloy Composition

Carbon (C), % 0 to 0.080
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 17.5 to 19.5
18 to 20
Copper (Cu), % 1.5 to 2.5
0
Iron (Fe), % 62 to 71.7
65.6 to 71.8
Manganese (Mn), % 0 to 2.0
0 to 1.0
Nickel (Ni), % 8.0 to 10.5
9.0 to 11
Niobium (Nb), % 0.1 to 0.5
0
Nitrogen (N), % 0 to 0.1
0.12 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 1.0 to 2.0
1.0 to 2.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Tungsten (W), % 0.2 to 0.8
0