MakeItFrom.com
Menu (ESC)

S30530 Stainless Steel vs. S43932 Stainless Steel

Both S30530 stainless steel and S43932 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 85% of their average alloy composition in common.

For each property being compared, the top bar is S30530 stainless steel and the bottom bar is S43932 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 46
25
Fatigue Strength, MPa 210
160
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 79
78
Shear Modulus, GPa 77
77
Shear Strength, MPa 410
300
Tensile Strength: Ultimate (UTS), MPa 590
460
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Corrosion, °C 420
570
Maximum Temperature: Mechanical, °C 970
890
Melting Completion (Liquidus), °C 1410
1440
Melting Onset (Solidus), °C 1370
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
23
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 18
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.4
2.7
Embodied Energy, MJ/kg 48
40
Embodied Water, L/kg 150
120

Common Calculations

PREN (Pitting Resistance) 22
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
96
Resilience: Unit (Modulus of Resilience), kJ/m3 130
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
17
Strength to Weight: Bending, points 20
17
Thermal Diffusivity, mm2/s 4.1
6.3
Thermal Shock Resistance, points 13
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 17 to 20.5
17 to 19
Copper (Cu), % 0.75 to 3.5
0
Iron (Fe), % 58.4 to 72.5
76.7 to 83
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 8.5 to 11.5
0 to 0.5
Niobium (Nb), % 0
0.2 to 0.75
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0.5 to 2.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.75