MakeItFrom.com
Menu (ESC)

S30600 Stainless Steel vs. 1350 Aluminum

S30600 stainless steel belongs to the iron alloys classification, while 1350 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S30600 stainless steel and the bottom bar is 1350 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
20 to 45
Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 45
1.4 to 30
Fatigue Strength, MPa 250
24 to 50
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 430
44 to 110
Tensile Strength: Ultimate (UTS), MPa 610
68 to 190
Tensile Strength: Yield (Proof), MPa 270
25 to 170

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Maximum Temperature: Mechanical, °C 950
170
Melting Completion (Liquidus), °C 1380
660
Melting Onset (Solidus), °C 1330
650
Specific Heat Capacity, J/kg-K 490
900
Thermal Conductivity, W/m-K 14
230
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
61 to 62
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
200 to 210

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 3.6
8.3
Embodied Energy, MJ/kg 51
160
Embodied Water, L/kg 150
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
0.77 to 54
Resilience: Unit (Modulus of Resilience), kJ/m3 190
4.4 to 200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 22
7.0 to 19
Strength to Weight: Bending, points 21
14 to 27
Thermal Diffusivity, mm2/s 3.7
96
Thermal Shock Resistance, points 14
3.0 to 8.2

Alloy Composition

Aluminum (Al), % 0
99.5 to 100
Boron (B), % 0
0 to 0.050
Carbon (C), % 0 to 0.018
0
Chromium (Cr), % 17 to 18.5
0 to 0.010
Copper (Cu), % 0 to 0.5
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 58.9 to 65.3
0 to 0.4
Manganese (Mn), % 0 to 2.0
0 to 0.010
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 14 to 15.5
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 3.7 to 4.3
0 to 0.1
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.020
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.1