MakeItFrom.com
Menu (ESC)

S30600 Stainless Steel vs. CC382H Copper-nickel

S30600 stainless steel belongs to the iron alloys classification, while CC382H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S30600 stainless steel and the bottom bar is CC382H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
130
Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 45
20
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
53
Tensile Strength: Ultimate (UTS), MPa 610
490
Tensile Strength: Yield (Proof), MPa 270
290

Thermal Properties

Latent Heat of Fusion, J/g 350
240
Maximum Temperature: Mechanical, °C 950
260
Melting Completion (Liquidus), °C 1380
1180
Melting Onset (Solidus), °C 1330
1120
Specific Heat Capacity, J/kg-K 490
410
Thermal Conductivity, W/m-K 14
30
Thermal Expansion, µm/m-K 16
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
5.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
5.6

Otherwise Unclassified Properties

Base Metal Price, % relative 19
41
Density, g/cm3 7.6
8.9
Embodied Carbon, kg CO2/kg material 3.6
5.2
Embodied Energy, MJ/kg 51
76
Embodied Water, L/kg 150
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
85
Resilience: Unit (Modulus of Resilience), kJ/m3 190
290
Stiffness to Weight: Axial, points 14
8.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22
15
Strength to Weight: Bending, points 21
16
Thermal Diffusivity, mm2/s 3.7
8.2
Thermal Shock Resistance, points 14
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Bismuth (Bi), % 0
0 to 0.0020
Boron (B), % 0
0 to 0.010
Carbon (C), % 0 to 0.018
0 to 0.030
Chromium (Cr), % 17 to 18.5
1.5 to 2.0
Copper (Cu), % 0 to 0.5
62.8 to 68.4
Iron (Fe), % 58.9 to 65.3
0.5 to 1.0
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 2.0
0.5 to 1.0
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 14 to 15.5
29 to 32
Phosphorus (P), % 0 to 0.020
0 to 0.010
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 3.7 to 4.3
0.15 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.010
Tellurium (Te), % 0
0 to 0.0050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0 to 0.15