MakeItFrom.com
Menu (ESC)

S30600 Stainless Steel vs. Grade 12 Titanium

S30600 stainless steel belongs to the iron alloys classification, while grade 12 titanium belongs to the titanium alloys. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S30600 stainless steel and the bottom bar is grade 12 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
170
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 45
21
Fatigue Strength, MPa 250
280
Poisson's Ratio 0.28
0.32
Reduction in Area, % 56
28
Shear Modulus, GPa 76
39
Shear Strength, MPa 430
330
Tensile Strength: Ultimate (UTS), MPa 610
530
Tensile Strength: Yield (Proof), MPa 270
410

Thermal Properties

Latent Heat of Fusion, J/g 350
420
Maximum Temperature: Mechanical, °C 950
320
Melting Completion (Liquidus), °C 1380
1660
Melting Onset (Solidus), °C 1330
1610
Specific Heat Capacity, J/kg-K 490
540
Thermal Conductivity, W/m-K 14
21
Thermal Expansion, µm/m-K 16
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
6.6

Otherwise Unclassified Properties

Base Metal Price, % relative 19
37
Density, g/cm3 7.6
4.5
Embodied Carbon, kg CO2/kg material 3.6
31
Embodied Energy, MJ/kg 51
500
Embodied Water, L/kg 150
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
110
Resilience: Unit (Modulus of Resilience), kJ/m3 190
770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 22
32
Strength to Weight: Bending, points 21
32
Thermal Diffusivity, mm2/s 3.7
8.5
Thermal Shock Resistance, points 14
37

Alloy Composition

Carbon (C), % 0 to 0.018
0 to 0.080
Chromium (Cr), % 17 to 18.5
0
Copper (Cu), % 0 to 0.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 58.9 to 65.3
0 to 0.3
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.2
0.2 to 0.4
Nickel (Ni), % 14 to 15.5
0.6 to 0.9
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 3.7 to 4.3
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
97.6 to 99.2
Residuals, % 0
0 to 0.4