MakeItFrom.com
Menu (ESC)

S30600 Stainless Steel vs. Grade 34 Titanium

S30600 stainless steel belongs to the iron alloys classification, while grade 34 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S30600 stainless steel and the bottom bar is grade 34 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 45
20
Fatigue Strength, MPa 250
310
Poisson's Ratio 0.28
0.32
Reduction in Area, % 56
34
Shear Modulus, GPa 76
41
Shear Strength, MPa 430
320
Tensile Strength: Ultimate (UTS), MPa 610
510
Tensile Strength: Yield (Proof), MPa 270
450

Thermal Properties

Latent Heat of Fusion, J/g 350
420
Maximum Temperature: Mechanical, °C 950
320
Melting Completion (Liquidus), °C 1380
1660
Melting Onset (Solidus), °C 1330
1610
Specific Heat Capacity, J/kg-K 490
540
Thermal Conductivity, W/m-K 14
21
Thermal Expansion, µm/m-K 16
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 19
55
Density, g/cm3 7.6
4.5
Embodied Carbon, kg CO2/kg material 3.6
33
Embodied Energy, MJ/kg 51
530
Embodied Water, L/kg 150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
100
Resilience: Unit (Modulus of Resilience), kJ/m3 190
960
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 22
31
Strength to Weight: Bending, points 21
31
Thermal Diffusivity, mm2/s 3.7
8.4
Thermal Shock Resistance, points 14
39

Alloy Composition

Carbon (C), % 0 to 0.018
0 to 0.080
Chromium (Cr), % 17 to 18.5
0.1 to 0.2
Copper (Cu), % 0 to 0.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 58.9 to 65.3
0 to 0.3
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 14 to 15.5
0.35 to 0.55
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.35
Palladium (Pd), % 0
0.010 to 0.020
Phosphorus (P), % 0 to 0.020
0
Ruthenium (Ru), % 0
0.020 to 0.040
Silicon (Si), % 3.7 to 4.3
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
98 to 99.52
Residuals, % 0
0 to 0.4