MakeItFrom.com
Menu (ESC)

S30600 Stainless Steel vs. C19700 Copper

S30600 stainless steel belongs to the iron alloys classification, while C19700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S30600 stainless steel and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 45
2.4 to 13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 430
240 to 300
Tensile Strength: Ultimate (UTS), MPa 610
400 to 530
Tensile Strength: Yield (Proof), MPa 270
330 to 520

Thermal Properties

Latent Heat of Fusion, J/g 350
210
Maximum Temperature: Mechanical, °C 950
200
Melting Completion (Liquidus), °C 1380
1090
Melting Onset (Solidus), °C 1330
1040
Specific Heat Capacity, J/kg-K 490
390
Thermal Conductivity, W/m-K 14
250
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
86 to 88
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
87 to 89

Otherwise Unclassified Properties

Base Metal Price, % relative 19
30
Density, g/cm3 7.6
8.9
Embodied Carbon, kg CO2/kg material 3.6
2.6
Embodied Energy, MJ/kg 51
41
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
12 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 190
460 to 1160
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 22
12 to 16
Strength to Weight: Bending, points 21
14 to 16
Thermal Diffusivity, mm2/s 3.7
73
Thermal Shock Resistance, points 14
14 to 19

Alloy Composition

Carbon (C), % 0 to 0.018
0
Chromium (Cr), % 17 to 18.5
0
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0 to 0.5
97.4 to 99.59
Iron (Fe), % 58.9 to 65.3
0.3 to 1.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.010 to 0.2
Manganese (Mn), % 0 to 2.0
0 to 0.050
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 14 to 15.5
0 to 0.050
Phosphorus (P), % 0 to 0.020
0.1 to 0.4
Silicon (Si), % 3.7 to 4.3
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2