MakeItFrom.com
Menu (ESC)

S30600 Stainless Steel vs. S44626 Stainless Steel

Both S30600 stainless steel and S44626 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 81% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S30600 stainless steel and the bottom bar is S44626 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 45
23
Fatigue Strength, MPa 250
230
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
80
Shear Strength, MPa 430
340
Tensile Strength: Ultimate (UTS), MPa 610
540
Tensile Strength: Yield (Proof), MPa 270
350

Thermal Properties

Latent Heat of Fusion, J/g 350
300
Maximum Temperature: Corrosion, °C 410
560
Maximum Temperature: Mechanical, °C 950
1100
Melting Completion (Liquidus), °C 1380
1440
Melting Onset (Solidus), °C 1330
1390
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 14
17
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 19
14
Density, g/cm3 7.6
7.7
Embodied Carbon, kg CO2/kg material 3.6
2.9
Embodied Energy, MJ/kg 51
42
Embodied Water, L/kg 150
160

Common Calculations

PREN (Pitting Resistance) 18
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
110
Resilience: Unit (Modulus of Resilience), kJ/m3 190
300
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
26
Strength to Weight: Axial, points 22
19
Strength to Weight: Bending, points 21
19
Thermal Diffusivity, mm2/s 3.7
4.6
Thermal Shock Resistance, points 14
18

Alloy Composition

Carbon (C), % 0 to 0.018
0 to 0.060
Chromium (Cr), % 17 to 18.5
25 to 27
Copper (Cu), % 0 to 0.5
0 to 0.2
Iron (Fe), % 58.9 to 65.3
68.1 to 74.1
Manganese (Mn), % 0 to 2.0
0 to 0.75
Molybdenum (Mo), % 0 to 0.2
0.75 to 1.5
Nickel (Ni), % 14 to 15.5
0 to 0.5
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 3.7 to 4.3
0 to 0.75
Sulfur (S), % 0 to 0.020
0 to 0.020
Titanium (Ti), % 0
0.2 to 1.0