MakeItFrom.com
Menu (ESC)

S30601 Stainless Steel vs. 360.0 Aluminum

S30601 stainless steel belongs to the iron alloys classification, while 360.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S30601 stainless steel and the bottom bar is 360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
75
Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 37
2.5
Fatigue Strength, MPa 250
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
27
Shear Strength, MPa 450
190
Tensile Strength: Ultimate (UTS), MPa 660
300
Tensile Strength: Yield (Proof), MPa 300
170

Thermal Properties

Latent Heat of Fusion, J/g 370
530
Maximum Temperature: Mechanical, °C 950
170
Melting Completion (Liquidus), °C 1360
590
Melting Onset (Solidus), °C 1310
570
Specific Heat Capacity, J/kg-K 500
900
Thermal Expansion, µm/m-K 15
21

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.6
2.6
Embodied Carbon, kg CO2/kg material 3.9
7.8
Embodied Energy, MJ/kg 55
140
Embodied Water, L/kg 150
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
6.4
Resilience: Unit (Modulus of Resilience), kJ/m3 230
200
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 24
32
Strength to Weight: Bending, points 22
38
Thermal Shock Resistance, points 16
14

Alloy Composition

Aluminum (Al), % 0
85.1 to 90.6
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 17 to 18
0
Copper (Cu), % 0 to 0.35
0 to 0.6
Iron (Fe), % 56.9 to 60.5
0 to 2.0
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0.5 to 0.8
0 to 0.35
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 17 to 18
0 to 0.5
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 5.0 to 5.6
9.0 to 10
Sulfur (S), % 0 to 0.013
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25