MakeItFrom.com
Menu (ESC)

S30601 Stainless Steel vs. 6014 Aluminum

S30601 stainless steel belongs to the iron alloys classification, while 6014 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S30601 stainless steel and the bottom bar is 6014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 37
9.1 to 17
Fatigue Strength, MPa 250
43 to 79
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 450
96 to 150
Tensile Strength: Ultimate (UTS), MPa 660
160 to 260
Tensile Strength: Yield (Proof), MPa 300
80 to 200

Thermal Properties

Latent Heat of Fusion, J/g 370
400
Maximum Temperature: Mechanical, °C 950
180
Melting Completion (Liquidus), °C 1360
640
Melting Onset (Solidus), °C 1310
620
Specific Heat Capacity, J/kg-K 500
900
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 3.9
8.6
Embodied Energy, MJ/kg 55
160
Embodied Water, L/kg 150
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
22
Resilience: Unit (Modulus of Resilience), kJ/m3 230
46 to 300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 24
16 to 26
Strength to Weight: Bending, points 22
24 to 33
Thermal Shock Resistance, points 16
7.0 to 11

Alloy Composition

Aluminum (Al), % 0
97.1 to 99.2
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 17 to 18
0 to 0.2
Copper (Cu), % 0 to 0.35
0 to 0.25
Iron (Fe), % 56.9 to 60.5
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0.5 to 0.8
0.050 to 0.2
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 17 to 18
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 5.0 to 5.6
0.3 to 0.6
Sulfur (S), % 0 to 0.013
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15