MakeItFrom.com
Menu (ESC)

S30601 Stainless Steel vs. EN AC-42200 Aluminum

S30601 stainless steel belongs to the iron alloys classification, while EN AC-42200 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S30601 stainless steel and the bottom bar is EN AC-42200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
89 to 100
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 37
3.0 to 6.7
Fatigue Strength, MPa 250
86 to 90
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Tensile Strength: Ultimate (UTS), MPa 660
320
Tensile Strength: Yield (Proof), MPa 300
240 to 260

Thermal Properties

Latent Heat of Fusion, J/g 370
500
Maximum Temperature: Mechanical, °C 950
170
Melting Completion (Liquidus), °C 1360
610
Melting Onset (Solidus), °C 1310
600
Specific Heat Capacity, J/kg-K 500
910
Thermal Expansion, µm/m-K 15
22

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.6
2.6
Embodied Carbon, kg CO2/kg material 3.9
8.0
Embodied Energy, MJ/kg 55
150
Embodied Water, L/kg 150
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
9.0 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 230
410 to 490
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 24
34 to 35
Strength to Weight: Bending, points 22
40 to 41
Thermal Shock Resistance, points 16
15

Alloy Composition

Aluminum (Al), % 0
91 to 93.1
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 17 to 18
0
Copper (Cu), % 0 to 0.35
0 to 0.050
Iron (Fe), % 56.9 to 60.5
0 to 0.19
Magnesium (Mg), % 0
0.45 to 0.7
Manganese (Mn), % 0.5 to 0.8
0 to 0.1
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 17 to 18
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 5.0 to 5.6
6.5 to 7.5
Sulfur (S), % 0 to 0.013
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1