MakeItFrom.com
Menu (ESC)

S30615 Stainless Steel vs. 1435 Aluminum

S30615 stainless steel belongs to the iron alloys classification, while 1435 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S30615 stainless steel and the bottom bar is 1435 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 39
4.1 to 32
Fatigue Strength, MPa 270
27 to 49
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 470
54 to 87
Tensile Strength: Ultimate (UTS), MPa 690
81 to 150
Tensile Strength: Yield (Proof), MPa 310
23 to 130

Thermal Properties

Latent Heat of Fusion, J/g 340
400
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1370
650
Melting Onset (Solidus), °C 1320
640
Specific Heat Capacity, J/kg-K 500
900
Thermal Conductivity, W/m-K 14
230
Thermal Expansion, µm/m-K 16
23

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.0
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 3.7
8.2
Embodied Energy, MJ/kg 53
150
Embodied Water, L/kg 170
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
5.0 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 260
3.8 to 110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 25
8.3 to 15
Strength to Weight: Bending, points 23
15 to 23
Thermal Diffusivity, mm2/s 3.7
93
Thermal Shock Resistance, points 16
3.6 to 6.7

Alloy Composition

Aluminum (Al), % 0.8 to 1.5
99.35 to 99.7
Carbon (C), % 0.16 to 0.24
0
Chromium (Cr), % 17 to 19.5
0
Copper (Cu), % 0
0 to 0.020
Iron (Fe), % 56.7 to 65.3
0.3 to 0.5
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0 to 0.050
Nickel (Ni), % 13.5 to 16
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 3.2 to 4.0
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.030
Zinc (Zn), % 0
0 to 0.1