MakeItFrom.com
Menu (ESC)

S30615 Stainless Steel vs. 2014A Aluminum

S30615 stainless steel belongs to the iron alloys classification, while 2014A aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S30615 stainless steel and the bottom bar is 2014A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 39
6.2 to 16
Fatigue Strength, MPa 270
93 to 150
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
27
Shear Strength, MPa 470
130 to 290
Tensile Strength: Ultimate (UTS), MPa 690
210 to 490
Tensile Strength: Yield (Proof), MPa 310
110 to 430

Thermal Properties

Latent Heat of Fusion, J/g 340
400
Maximum Temperature: Mechanical, °C 960
210
Melting Completion (Liquidus), °C 1370
640
Melting Onset (Solidus), °C 1320
510
Specific Heat Capacity, J/kg-K 500
870
Thermal Conductivity, W/m-K 14
150
Thermal Expansion, µm/m-K 16
23

Otherwise Unclassified Properties

Base Metal Price, % relative 19
11
Density, g/cm3 7.6
3.0
Embodied Carbon, kg CO2/kg material 3.7
8.1
Embodied Energy, MJ/kg 53
150
Embodied Water, L/kg 170
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 260
85 to 1300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 25
19 to 45
Strength to Weight: Bending, points 23
26 to 46
Thermal Diffusivity, mm2/s 3.7
55
Thermal Shock Resistance, points 16
9.0 to 22

Alloy Composition

Aluminum (Al), % 0.8 to 1.5
90.8 to 95
Carbon (C), % 0.16 to 0.24
0
Chromium (Cr), % 17 to 19.5
0 to 0.1
Copper (Cu), % 0
3.9 to 5.0
Iron (Fe), % 56.7 to 65.3
0 to 0.5
Magnesium (Mg), % 0
0.2 to 0.8
Manganese (Mn), % 0 to 2.0
0.4 to 1.2
Nickel (Ni), % 13.5 to 16
0 to 0.1
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 3.2 to 4.0
0.5 to 0.9
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15