MakeItFrom.com
Menu (ESC)

S30615 Stainless Steel vs. 5056 Aluminum

S30615 stainless steel belongs to the iron alloys classification, while 5056 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S30615 stainless steel and the bottom bar is 5056 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
67
Elongation at Break, % 39
4.9 to 31
Fatigue Strength, MPa 270
140 to 200
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
25
Shear Strength, MPa 470
170 to 240
Tensile Strength: Ultimate (UTS), MPa 690
290 to 460
Tensile Strength: Yield (Proof), MPa 310
150 to 410

Thermal Properties

Latent Heat of Fusion, J/g 340
400
Maximum Temperature: Mechanical, °C 960
190
Melting Completion (Liquidus), °C 1370
640
Melting Onset (Solidus), °C 1320
570
Specific Heat Capacity, J/kg-K 500
910
Thermal Conductivity, W/m-K 14
130
Thermal Expansion, µm/m-K 16
24

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 3.7
9.0
Embodied Energy, MJ/kg 53
150
Embodied Water, L/kg 170
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
12 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 260
170 to 1220
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 25
30 to 48
Strength to Weight: Bending, points 23
36 to 50
Thermal Diffusivity, mm2/s 3.7
53
Thermal Shock Resistance, points 16
13 to 20

Alloy Composition

Aluminum (Al), % 0.8 to 1.5
93 to 95.4
Carbon (C), % 0.16 to 0.24
0
Chromium (Cr), % 17 to 19.5
0.050 to 0.2
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 56.7 to 65.3
0 to 0.4
Magnesium (Mg), % 0
4.5 to 5.6
Manganese (Mn), % 0 to 2.0
0.050 to 0.2
Nickel (Ni), % 13.5 to 16
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 3.2 to 4.0
0 to 0.3
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15