MakeItFrom.com
Menu (ESC)

S30615 Stainless Steel vs. 6018 Aluminum

S30615 stainless steel belongs to the iron alloys classification, while 6018 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S30615 stainless steel and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 39
9.0 to 9.1
Fatigue Strength, MPa 270
85 to 89
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 470
170 to 180
Tensile Strength: Ultimate (UTS), MPa 690
290 to 300
Tensile Strength: Yield (Proof), MPa 310
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 340
400
Maximum Temperature: Mechanical, °C 960
160
Melting Completion (Liquidus), °C 1370
640
Melting Onset (Solidus), °C 1320
570
Specific Heat Capacity, J/kg-K 500
890
Thermal Conductivity, W/m-K 14
170
Thermal Expansion, µm/m-K 16
23

Otherwise Unclassified Properties

Base Metal Price, % relative 19
10
Density, g/cm3 7.6
2.9
Embodied Carbon, kg CO2/kg material 3.7
8.2
Embodied Energy, MJ/kg 53
150
Embodied Water, L/kg 170
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
24 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 260
360 to 380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
48
Strength to Weight: Axial, points 25
28 to 29
Strength to Weight: Bending, points 23
34 to 35
Thermal Diffusivity, mm2/s 3.7
65
Thermal Shock Resistance, points 16
13

Alloy Composition

Aluminum (Al), % 0.8 to 1.5
93.1 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Carbon (C), % 0.16 to 0.24
0
Chromium (Cr), % 17 to 19.5
0 to 0.1
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 56.7 to 65.3
0 to 0.7
Lead (Pb), % 0
0.4 to 1.2
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0 to 2.0
0.3 to 0.8
Nickel (Ni), % 13.5 to 16
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 3.2 to 4.0
0.5 to 1.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15