MakeItFrom.com
Menu (ESC)

S30615 Stainless Steel vs. 6063 Aluminum

S30615 stainless steel belongs to the iron alloys classification, while 6063 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S30615 stainless steel and the bottom bar is 6063 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
25 to 95
Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 39
7.3 to 21
Fatigue Strength, MPa 270
39 to 95
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 470
70 to 190
Tensile Strength: Ultimate (UTS), MPa 690
110 to 300
Tensile Strength: Yield (Proof), MPa 310
49 to 270

Thermal Properties

Latent Heat of Fusion, J/g 340
400
Maximum Temperature: Mechanical, °C 960
160
Melting Completion (Liquidus), °C 1370
650
Melting Onset (Solidus), °C 1320
620
Specific Heat Capacity, J/kg-K 500
900
Thermal Conductivity, W/m-K 14
190 to 220
Thermal Expansion, µm/m-K 16
23

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 3.7
8.3
Embodied Energy, MJ/kg 53
150
Embodied Water, L/kg 170
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
13 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 260
18 to 540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 25
11 to 31
Strength to Weight: Bending, points 23
18 to 37
Thermal Diffusivity, mm2/s 3.7
79 to 89
Thermal Shock Resistance, points 16
4.8 to 13

Alloy Composition

Aluminum (Al), % 0.8 to 1.5
97.5 to 99.4
Carbon (C), % 0.16 to 0.24
0
Chromium (Cr), % 17 to 19.5
0 to 0.1
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 56.7 to 65.3
0 to 0.35
Magnesium (Mg), % 0
0.45 to 0.9
Manganese (Mn), % 0 to 2.0
0 to 0.1
Nickel (Ni), % 13.5 to 16
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 3.2 to 4.0
0.2 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15