MakeItFrom.com
Menu (ESC)

S30615 Stainless Steel vs. 7020 Aluminum

S30615 stainless steel belongs to the iron alloys classification, while 7020 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S30615 stainless steel and the bottom bar is 7020 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
45 to 100
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 39
8.4 to 14
Fatigue Strength, MPa 270
110 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 470
110 to 230
Tensile Strength: Ultimate (UTS), MPa 690
190 to 390
Tensile Strength: Yield (Proof), MPa 310
120 to 310

Thermal Properties

Latent Heat of Fusion, J/g 340
380
Maximum Temperature: Mechanical, °C 960
210
Melting Completion (Liquidus), °C 1370
650
Melting Onset (Solidus), °C 1320
610
Specific Heat Capacity, J/kg-K 500
880
Thermal Conductivity, W/m-K 14
150
Thermal Expansion, µm/m-K 16
23

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.6
2.9
Embodied Carbon, kg CO2/kg material 3.7
8.3
Embodied Energy, MJ/kg 53
150
Embodied Water, L/kg 170
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
23 to 46
Resilience: Unit (Modulus of Resilience), kJ/m3 260
110 to 690
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 25
18 to 37
Strength to Weight: Bending, points 23
25 to 41
Thermal Diffusivity, mm2/s 3.7
59
Thermal Shock Resistance, points 16
8.3 to 17

Alloy Composition

Aluminum (Al), % 0.8 to 1.5
91.2 to 94.8
Carbon (C), % 0.16 to 0.24
0
Chromium (Cr), % 17 to 19.5
0.1 to 0.35
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 56.7 to 65.3
0 to 0.4
Magnesium (Mg), % 0
1.0 to 1.4
Manganese (Mn), % 0 to 2.0
0.050 to 0.5
Nickel (Ni), % 13.5 to 16
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 3.2 to 4.0
0 to 0.35
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
4.0 to 5.0
Zirconium (Zr), % 0
0.080 to 0.25
Residuals, % 0
0 to 0.15