MakeItFrom.com
Menu (ESC)

S30615 Stainless Steel vs. C443.0 Aluminum

S30615 stainless steel belongs to the iron alloys classification, while C443.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S30615 stainless steel and the bottom bar is C443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
65
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 39
9.0
Fatigue Strength, MPa 270
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
27
Shear Strength, MPa 470
130
Tensile Strength: Ultimate (UTS), MPa 690
230
Tensile Strength: Yield (Proof), MPa 310
100

Thermal Properties

Latent Heat of Fusion, J/g 340
470
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1370
630
Melting Onset (Solidus), °C 1320
600
Specific Heat Capacity, J/kg-K 500
900
Thermal Conductivity, W/m-K 14
140
Thermal Expansion, µm/m-K 16
22

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 3.7
7.9
Embodied Energy, MJ/kg 53
150
Embodied Water, L/kg 170
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
17
Resilience: Unit (Modulus of Resilience), kJ/m3 260
70
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 25
24
Strength to Weight: Bending, points 23
31
Thermal Diffusivity, mm2/s 3.7
58
Thermal Shock Resistance, points 16
10

Alloy Composition

Aluminum (Al), % 0.8 to 1.5
89.6 to 95.5
Carbon (C), % 0.16 to 0.24
0
Chromium (Cr), % 17 to 19.5
0
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 56.7 to 65.3
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0 to 0.35
Nickel (Ni), % 13.5 to 16
0 to 0.5
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 3.2 to 4.0
4.5 to 6.0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25