MakeItFrom.com
Menu (ESC)

S30615 Stainless Steel vs. C67500 Bronze

S30615 stainless steel belongs to the iron alloys classification, while C67500 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S30615 stainless steel and the bottom bar is C67500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 39
14 to 33
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 75
40
Shear Strength, MPa 470
270 to 350
Tensile Strength: Ultimate (UTS), MPa 690
430 to 580
Tensile Strength: Yield (Proof), MPa 310
170 to 370

Thermal Properties

Latent Heat of Fusion, J/g 340
170
Maximum Temperature: Mechanical, °C 960
120
Melting Completion (Liquidus), °C 1370
890
Melting Onset (Solidus), °C 1320
870
Specific Heat Capacity, J/kg-K 500
390
Thermal Conductivity, W/m-K 14
110
Thermal Expansion, µm/m-K 16
21

Otherwise Unclassified Properties

Base Metal Price, % relative 19
23
Density, g/cm3 7.6
8.0
Embodied Carbon, kg CO2/kg material 3.7
2.8
Embodied Energy, MJ/kg 53
47
Embodied Water, L/kg 170
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
61 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 260
130 to 650
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 25
15 to 20
Strength to Weight: Bending, points 23
16 to 19
Thermal Diffusivity, mm2/s 3.7
34
Thermal Shock Resistance, points 16
14 to 19

Alloy Composition

Aluminum (Al), % 0.8 to 1.5
0 to 0.25
Carbon (C), % 0.16 to 0.24
0
Chromium (Cr), % 17 to 19.5
0
Copper (Cu), % 0
57 to 60
Iron (Fe), % 56.7 to 65.3
0.8 to 2.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
0.050 to 0.5
Nickel (Ni), % 13.5 to 16
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 3.2 to 4.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
35.1 to 41.7
Residuals, % 0
0 to 0.5