MakeItFrom.com
Menu (ESC)

S30615 Stainless Steel vs. WE54A Magnesium

S30615 stainless steel belongs to the iron alloys classification, while WE54A magnesium belongs to the magnesium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S30615 stainless steel and the bottom bar is WE54A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
85
Elastic (Young's, Tensile) Modulus, GPa 190
44
Elongation at Break, % 39
4.3 to 5.6
Fatigue Strength, MPa 270
98 to 130
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
17
Shear Strength, MPa 470
150 to 170
Tensile Strength: Ultimate (UTS), MPa 690
270 to 300
Tensile Strength: Yield (Proof), MPa 310
180

Thermal Properties

Latent Heat of Fusion, J/g 340
330
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1370
640
Melting Onset (Solidus), °C 1320
570
Specific Heat Capacity, J/kg-K 500
960
Thermal Conductivity, W/m-K 14
52
Thermal Expansion, µm/m-K 16
25

Otherwise Unclassified Properties

Base Metal Price, % relative 19
34
Density, g/cm3 7.6
1.9
Embodied Carbon, kg CO2/kg material 3.7
29
Embodied Energy, MJ/kg 53
260
Embodied Water, L/kg 170
900

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
10 to 14
Resilience: Unit (Modulus of Resilience), kJ/m3 260
360 to 380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
62
Strength to Weight: Axial, points 25
39 to 43
Strength to Weight: Bending, points 23
49 to 51
Thermal Diffusivity, mm2/s 3.7
28
Thermal Shock Resistance, points 16
18 to 19

Alloy Composition

Aluminum (Al), % 0.8 to 1.5
0
Carbon (C), % 0.16 to 0.24
0
Chromium (Cr), % 17 to 19.5
0
Copper (Cu), % 0
0 to 0.030
Iron (Fe), % 56.7 to 65.3
0 to 0.010
Lithium (Li), % 0
0 to 0.2
Magnesium (Mg), % 0
88.7 to 93.4
Manganese (Mn), % 0 to 2.0
0 to 0.030
Nickel (Ni), % 13.5 to 16
0 to 0.0050
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 3.2 to 4.0
0 to 0.010
Sulfur (S), % 0 to 0.030
0
Unspecified Rare Earths, % 0
1.5 to 4.0
Yttrium (Y), % 0
4.8 to 5.5
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.3